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Abstract. It has been suggested that the Grothendieck–Teichmüller group GT should act on the Duflo iso-
morphism of su(2), but the corresponding realization of GT turned out to be trivial. We show that a solvable
quotient of the motivic Galois group – which is supposed to agree with GT – is closely related to the quantum
coadjoint action on Uq (sl2) for q a root of unity, i.e. in the quantum group case one has a nontrivial realiza-
tion of a quotient of the motivic Galois group. From a discussion of the algebraic properties of this realization
we conclude that in more general cases than Uq (sl2) it should be related to a quantum version of the motivic
Galois group. Finally, we discuss the relation of our construction to quantum field and string theory and
explain what we believe to be the ‘physical reason’ behind this relation between the motivic Galois group
and the quantum coadjoint action. This might be a starting point for the generalization of our construction
to more involved examples.

1 Introduction

In the seminal paper [23], a symmetry on the space D (M)
of deformation quantizations of a finite-dimensional mani-
fold M , in the form of an action of a quotient of the
motivic Galois group (this quotient is supposed to be
equivalent to the Grothendieck–Teichmüller group GT
as introduced in [9]), is discussed. Conjecturally, this
is related to an action of GT on the extended mod-
uli space (see [21, 32] for this notion) of conformal field
theories, as it appears in string theory. As a simple ex-
ample for the appearance of this symmetry, an action
of GT on the Duflo isomorphism of finite-dimensional
Lie algebras is suggested. But, it was observed by Du-
flo (see [23]) that the corresponding realization of GT is
trivial.
In this paper, we restrict the consideration to the case

of the Lie algebra su(2). We pose the question of whether
a nontrivial realization of the motivic Galois group can be
observed in the q-deformed case. Since our argument does
not involve any ∗-structure, we can work with the quan-
tum algebra Uq (sl2). We show that in the case where q is
a root of unity, the quantum coadjoint action on Uq (sl2)
(see [7, 8]) is, indeed, closely related to a quotient of the
motivic Galois group, which is stated in [23] to act on the
Hochschild cohomology of algebraic varieties and is con-
jectured, there, to be equivalent to GT. It is precisely the
much larger and highly nontrivial center of Uq (sl2), ap-
pearing in the root of unity case, which makes a nontrivial
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realization of the motivic Galois group possible. This ex-
plains why one observes in the nondeformed case – but also
in the case of generic values of q – only a trivial realization.
After collecting, in Sect. 2, some basic background ma-

terial on the motivic Galois group and the quantum coad-
joint action, we present, in Sect. 3, our construction. In
Sect. 4, we discuss the relation of our result to quantum
field and string theory. The algebraic structure appearing
in our construction suggests that in the case of more in-
volved examples than Uq (sl2) a quantum version of the
motivic Galois group will appear. We suggest a physical
‘explanation’, rooted in properties of quantum field the-
ory, of why our construction works, which might serve as
a starting point for the generalization to other examples.
Section 5 contains some concluding remarks.
We should utter a warning addressed to any potential

reader of this paper who is on a technical level acquainted
with modern algebraic number theory: the necessary speci-
fication of the precise type of motivic Galois group to use
(pro-nilpotent, pro-unipotent, etc.) is completely ignored
in this paper. We work with the (pro-unipotent) approach
of [23] and feel free to adopt the terminology ‘the motivic
Galois group’ used there.

2 Background material on the motivic Galois
group and the quantum coadjoint action

The Grothendieck–Teichmüller group GT is introduced
in [9] as a kind of gauge freedom on the Drinfeld associa-
tor α and the R-matrix of any quasitriangular quasi-Hopf
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algebra (see [9] for the technical details). It was already
observed there that the Lie algebra of GT is closely re-
lated to the so-called Ihara algebra (see [18, 19]). The Ihara
algebra has the following structure: consider formal expres-
sions ϕ (.) where the (.) indicates that these expressions
can be evaluated at any finite-dimensional metrizable – i.e.
equipped with an invariant inner product – Lie algebra g.
After evaluation, ϕ (g) becomes an element of the Poisson
algebra defined by the Kirillov bracket {, }g of g. So, the
ϕ (.) are, roughly speaking, all universal expressions which
one can define for any finite-dimensional metrizable Lie al-
gebra using the Kirillov bracket. The Ihara algebra is then
defined as the Lie algebra with bracket [, ] on the ϕ (.) with

[ϕ1, ϕ2] (g) = {ϕ1 (g) , ϕ2 (g)}g . (1)

It is conjectured in [23] that GT can be identified with
a solvable quotient of the motivic Galois group, the Lie al-
gebra of this quotient having generators L0, P3, P5, P7, ...
and the bracket being given by

[P2k+1, P2l+1] = 0 (2)

and

[L0, P2k+1] = (2k+1)P2k+1 (3)

for all k, l ≥ 1. A proof is announced there that this quo-
tient acts on the Hochschild cohomology of any complex
algebraic variety.
A simple explicit example for an action of GT is sug-

gested in [23] by considering the Duflo isomorphism of
a finite- dimensional Lie algebra g over R: the Poincare–
Birkhoff–Witt isomorphism gives a linear isomorphism be-
tween the universal envelope U (g) of g and the algebra
Sym (g) of polynomials on g∗. This is, obviously, not an
algebra isomorphism since U (g) is noncommutative. But,
as shown in [10], the restriction of the Poincare–Birkhoff–
Witt map to a linear isomorphism between the center of
U (g) and the algebra Sym (g)

g
of invariant polynomials

on g∗ becomes an algebra isomorphism after combining it
with an automorphism of Sym (g)g. This automorphism is
generated (see e.g. [22] for the technical details) by the for-
mal power series

F (x) =

√
e
x
2 − e−

x
2

x
. (4)

The claim is that there are other possible choices for F
than the classical choice (4) and that this ‘gauge freedom’
of the Duflo isomorphism is described by an action of GT.
But, this action of GT turns out to be trivial: it was ob-
served by Duflo (see [23]) that, though the different choices
of F generate different morphisms of Sym (g), upon re-
striction to Sym (g)

g
all choices are equivalent.

We will show in this paper for the case g = su(2) that
upon passing to the quantum algebra Uq (sl2) for q a root
of unity, one does obtain a nontrivial action of the quotient
of the motivic Galois group determined by (2) and (3).
Since we do not need any ∗-structure in our construction,

we can work with the algebraUq (sl2) instead of a quantum
version of su(2). We will close this section with a brief in-
troduction to Uq (sl2) and the quantum coadjoint action,
and a short explanation of why the question of an action of
the motivic Galois group related to the center of U (g) or
Uq (g) is of special interest in string theory.
The quantum algebra Uq (sl2), q ∈ C is defined as

the complex, associative, unital algebra with generators
e, f, k, k−1 and relations

kk−1= k−1k = 1

ke= q2ek

kf = q−2fk

[e, f ]=
k−k−1

q− q−1
.

In addition, Uq (sl2) carries a uniquely given Hopf algebra
structure with coproduct

∆ (e)= e⊗1+k⊗ e

∆ (f)= f ⊗k−1+1⊗f

∆ (k)= k⊗k .

counit

ε (e)= ε (f) = 0

ε (k)= 1 .

and antipode

Γ (e)=−k−1e

Γ (f)=−fk

Γ (k)= k−1 .

For q not a root of unity, i.e. qn �= 1 for all n ∈N, the center
of Uq (sl2) is generated by the quantum Casimir Cq given
by

Cq = qk+ q
−1k−1+

(
q− q−1

)2
fe . (5)

Now, let q be a primitive lth root of unity with l ≥ 3,
i.e. ql = 1 and qn �= 1 for n < l. In this case, the center of
Uq (sl2) is generated by Cq and Z0, where Z0 is the com-
mutative subalgebra of Uq (sl2) generated by the elements
x, y, z, z−1 with

x=
((
q− q−1

)
e
)l

y=
((
q− q−1

)
f
)l

z= kl

z−1= k−l

and

l = l

for l odd, and

l =
l

2
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for l even. For a more detailed introduction to Uq (sl2) we
refer the reader to [5] or [26].
The quantum coadjoint action (see [7, 8]) on Uq (sl2) is

introduced as follows: define derivations e, f, k, k−1 on
Uq (sl2) by

e (a)=

[
el[
l
]
q
!
, a

]

f (a)=

[
f l[
l
]
q
!
, a

]

k (a)=

[
kl[
l
]
q
!
, a

]

k−1 (a)=

⎡
⎣(k−1)l[
l
]
q
!
, a

⎤
⎦

for a ∈ Uq (sl2). Remember that the q-factorial [n]q! is
given by

[n]q! = [n]q [n−1]q ... [1]q .

These derivations stay well defined in the limit ql→ 1 and
can, alternatively, be defined by

e (e)=0

e (f)=
kq−k−1q−1

q− q−1
el−1

[l−1]!

e (k)=−l−1xk

e
(
k−1
)
= l−1xk−1

and

f (e)=−
f l−1

[l−1]!

kq−k−1q−1

q− q−1

f (f)=0

f (k)= l−1yk

f
(
k−1
)
=−l−1yk−1 .

We only give this alternative definition for e, f here, since
these will serve as the generators of the quantum coadjoint
action (see below). The action of e, f , k, k−1 on the subal-
gebra Z0 is given by

e (x) =0

e (y)= z− z−1

e (z)=−xz

e
(
z−1
)
=−xz−1

respectively

f (x) =−
(
z− z−1

)
f (y)=0

f (z)= yz

f
(
z−1
)
=−yz−1

respectively

k (x)=xz

k (y)=−yz

k (z)= k
(
z−1
)
= 0

and

k−1 (x) =xz−1

k−1 (y)=−yz−1

k−1 (z)= k−1
(
z−1
)
= 0 .

Exponentiating e and f yields automorphisms of Uq (sl2).
We denote by G the (infinite-dimensional) group of auto-
morphisms of Uq (sl2) generated by the exponentials of e
and f and by L (G) the Lie algebra of G.

Now, let Ĝ be the following group: as elements of Ĝ we
take formal expressions ϕ (.), which can be evaluated at
any Hopf algebraH in the class of Hopf algebras that carry
a quantum coadjoint action. Denote by GH the correspond-
ing group of automorphisms, i.e.

GUq(sl2) = G .

We assume that after evaluation

ϕ (H) ∈ GH .

Define the group law of Ĝ by

(ϕ1 ·ϕ2) (H) = ϕ1 (H) ·ϕ2 (H)

where on the right-hand side the multiplication is taken in
GH . It is easily checked by calculation that this together
with the definition of a unit 1 and an inverse (.)

−1
of Ĝ by

1 (H) = 1GH

and

ϕ−1 (H) = (ϕ (H))
−1

gives Ĝ the structure of a group.
Obviously, Ĝ generalizes the Ihara algebra in precisely

the same way in which the quantum coadjoint action
generalizes the classical coadjoint action and the Kirillov
bracket. In this sense, the quantum coadjoint action seems
to be a concrete realization of a universal structure related
to a quantum counterpart of the motivic Galois group.
We will see in Sect. 3 that one can establish this claim for
Uq (sl2) in a precise way by studying the Lie algebra L (G)
in more detail.
Let us close this section by briefly mentioning the

role played by Uq (sl2) in string theory: for a stack of
k flat NS5 branes the background is completely deter-
mined by vanishing Ramond–Ramond (R–R) fields and
(see [3, 4, 12, 30])

ds2= ηµνdx
µdxν + e−2φ

(
dr2+ r2ds23

)
e−2φ= e−2φ0

(
1+
k

r2

)
H = dB =−kdΩ3
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where µ, ν = 0, 1, ..., 5 are directions tangent to the NS5
brane. Here, ds3 and dΩ3 denote the line element and vol-
ume form, respectively, on the S3. So, in the transversal
geometry of the flat NS5 there is always contained an S3.
Strings on the transversal S3 can always be described by
a super-extension of the SU(2)-WZW model at level k.
One can further show (see the cited literature) that the
fermionic degrees of freedom can be decoupled and one is
left with the usual SU(2)-WZWmodel and a renormaliza-
tion of the level k by

k �→ k+2 .

It has further been shown in [1] that the world-volume
geometry ofD-branes in the SU(2)-WZWmodel at level k
is described by the q-deformed fuzzy sphere of [15], i.e. by
the representation theory of Uq (sl2) with

q = e
2πi
k+2 .

In the limit k→∞ one retains the usual fuzzy sphere
of [28], which is completely determined by the representa-
tion theory of su(2).
In [23] and [25] a far-reaching program was initiated to

establish an action of (a quotient of) the motivic Galois
group on the extended moduli space of (topological) string
theory. It is tempting to ask for a similar approach in the
much simpler case of the SU(2)-WZWmodel. The sugges-
tion made in [23] to study an action of the motivic Galois
group on the center of U (su(2)) (more precisely, on the
Duflo isomorphism of su(2), see above) is very much re-
lated to trying to find such an action for the SU(2)-WZW
model at level k→∞. As we have mentioned already, the
action one finds in this way is trivial. Now, k→∞ is an un-
physical limit (infinite stack of NS5 branes). The approach
we follow, here, to study the center of the quantum alge-
bra Uq (sl2) at roots of unity, instead, can from the string
theoretic side be seen as returning to the physically more
realistic case of finite level k.

3 The construction

As is well known, the Lie algebra L (G) is infinite dimen-
sional. Concretely, this means that the commutator

[
e, f
]

does not close but is the starting point for the definition of
infinitely many new basis elements of the Lie algebra. Here,
and in the sequel, we mean by a commutator like

[
e, f
]
the

commutator in the sense of derivations, i.e.[
e, f
]
= e◦ f−f ◦ e

where ◦ denotes the successive application of the deriva-
tions. We introduce the following notation:

L= k+k−1

e0= e

f0= f .

One checks that [
e, f
]
= L .

We further define for all N ∈ N

eN+1=[L, eN ]

fN+1=[L, fN ] .

Lemma 1. On the subalgebra Z0 we have

eN (x) =Nx
2
(
z+ z−1

)N−1 (
z− z−1

)
eN (y) =

(
z+ z−1

)N (
z− z−1

)
−Nxy

(
z+ z−1

)N−1 (
z− z−1

)
eN
(
z+ z−1

)
= (−x)

(
z+ z−1

)N (
z− z−1

)
and

fN (x) = (−1)
N−1 (

z+ z−1
)N (
z− z−1

)
+(−1)N Nxy

(
z+ z−1

)N−1 (
z− z−1

)
fN (y) = (−1)

N−1
Ny2

(
z+ z−1

)N−1 (
z− z−1

)
fN
(
z+ z−1

)
= (−1)N y

(
z+ z−1

)N (
z− z−1

)
.

Proof. By calculation.

For convenience, we have chosen the coordinate z+z−1

instead of z (observe that z and z−1 are not independent,
i.e. we do not have to take the complementary coordinate
z− z−1, in addition).
Let A be the algebra of polynomials in z and z−1.

Defining

L0 = z
d

dz

and

P 2k+1 = z
2k+1

one checks that for arbitrary ψ ∈A we have[
L0, P 2k+1

]
ψ

=L0P 2k+1ψ−P 2k+1L0ψ

=

(
z
d

dz
P 2k+1

)
ψ+ zP2k+1

(
d

dz
ψ

)
− zP 2k+1

(
d

dz
ψ

)
=(2k+1)P 2k+1ψ

i.e. [
L0, P 2k+1

]
= (2k+1)P 2k+1

and L0 and the P 2k+1 give a representation of the algebra
defined by (2) and (3). Denote this representation by 
.
Let I and A be the following two linear operators onA:

I (ψ) = zψ
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and

A (z) = z+ z−1

for ψ ∈ A and extension of A to A by requiring conserva-
tion of products and inversion.
Obviously, I commutes with the P 2k+1. We can use I to

enlarge 
 by considering the additional commutators[
L0, IP 2k+1

]
= (2k+2) IP 2k+1

i.e. the resulting algebra has the form[
L0, Pn

]
= nPn

where now n ∈ N. Finally, we use A to apply a coordinate
transformation to the operator Pn:

Pn �→ Pn ◦A .

We obtain the resulting commutators

[L0, Pn] = nPn−1
(
z− z−1

)
(6)

where

Pn = Pn ◦A

i.e.

Pn (z) =
(
z+ z−1

)n
.

We call the Lie algebra defined by (6) 
̂. As follows from the
construction, 
̂ is directly induced by a coordinate trans-
formation on one of the operators and a trivial enlargement
by the operator I from the representation 
.
We can now rewrite the result of the previous lemma as

eN
(
z+ z−1

)
=(−x)

(
z+ z−1

)
[L0, PN ] (z)

eN (x)=Nx
2 [L0, PN ] (z)

eN (y)=
(
z+ z−1−Nxy

)
[L0, PN ] (z)

and

fN
(
z+ z−1

)
=(−1)N−1 (−y)

(
z+ z−1

)
[L0, PN ] (z)

fN (x) = (−1)
N−1 (

z+ z−1−Nxy
)
[L0, PN ] (z)

fN (y)= (−1)
N−1
Ny2 [L0, PN ] (z) .

As we have remarked already, from the four variables
x, y, z, z−1, z and z−1 are not independent. Actually, only
two free variables remain after taking a quotient to imple-
ment the relation

z+ z−1+xy = 0 . (7)

This should be done because of the following lemma:

Lemma 2. For all N ∈ N we have

eN
(
z+ z−1+xy

)
= fN

(
z+ z−1+xy

)
= 0 .

Proof. We have

eN
(
z+ z−1+xy

)
=(−x)

(
z+ z−1

)N (
z− z−1

)
+ eN (x) y+xeN (y)

= (−x)
(
z+ z−1

)N (
z− z−1

)
+Nx2y

(
z+ z−1

)N−1(
z− z−1

)
+x
(
z+ z−1

)N(
z− z−1

)
−Nx2y

(
z+ z−1

)N−1(
z− z−1

)
=0 .

A similar calculation proves the case of the fN .

On a more abstract level, the result of the previous
lemma can be seen as a consequence of the fact that the
quantum Casimir Cq is invariant under the quantum coad-
joint action, i.e. the polynomial z+z−1+xy is annihilated
by L (G) (see the cited literature; see also Sect. 2 of [24] for
a brief overview of some properties of the quantum coad-
joint action).
Using (7), we finally have

eN
(
z+ z−1

)
= (−x)

(
z+ z−1

)
[L0, PN ] (z)

eN (x) =Nx
2 [L0, PN ] (z)

eN (y) =− (N +1)xy [L0, PN ] (z) (8)

and

fN
(
z+ z−1

)
= (−1)N−1 (−y)

(
z+ z−1

)
[L0, PN ] (z)

fN (x) = (−1)
N−1
(− (N +1))xy [L0, PN ] (z)

fN (y) = (−1)
N−1
Ny2 [L0, PN ] (z) . (9)

In conclusion, the operators eN , fN give a three-dimen-
sional – using variables x, y, z – realization of the algebra 
̂.
The nontrivial action of these operators on the variable
z is always given by a commutator in 
̂. The additional
polynomial in x, y, z, z−1 in front of the commutator is
completely determined – up to a numerical factor – by the
trivial rule that eN multiplies the argument by x and fN
multiplies the argument by y. For example, eN

(
z+ z−1

)
receives the factor x

(
z+ z−1

)
while fN (x) receives the fac-

tor xy. One may then prove that the numerical coefficients
are completely determined by the requirement (7).
As an immediate consequence of (8) and (9), the com-

mutators [eN , eM ], [eN , fM ], etc. are determined by the
higher commutators in 
̂ together with an extension of
the multiplication rule for the coefficients. For example,
[eN , eM ] (y) means that the coefficient polynomial is x

2y
since we have two factors eN , eM and, hence, a multiplica-
tion by x2. In consequence, we have the following result:

Lemma 3. The complete algebra L (G) is induced, in the
way described above, by a representation of the solvable quo-
tient of the motivic Galois group given by (2) and (3).

The nontriviality of the quantum coadjoint action im-
mediately shows that the quotient of the motivic Galois
group is realized nontrivially on Uq (sl2).

Remark 1. The coefficient factors obtained by the rule
that eN multiplies by x and fN by y strongly remind
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one of how one would introduce an affine version of
the algebra given by (2) and (3). In the case of the
classical finite-dimensional Lie algebras, the theorem of
Kazhdan–Lusztig [27] relates the affine version of the Lie
algebra to a quantum deformation of the universal en-
velope of the Lie algebra. A corresponding theorem for
the infinite-dimensional case is not proved but we will
see below that, indeed, we should see L (G) as a real-
ization of a quantum counterpart of the motivic Galois
group. This is also in accordance with the construction
of Ĝ above as a quantum analogue of the Ihara alge-
bra. The fact that in the case of Uq (sl2) we mainly – up
to a simple multiplication table – see the classical mo-
tivic Galois group should be related to the semi-rigidity
of Uq (sl2) (i.e. one can always transform away defor-
mations of the coproduct), which makes the Hopf al-
gebra cohomology of Uq (sl2) very close to Hochschild
cohomology.
In Sect. 4, we will give a physics-motivated ‘explana-

tion’ for the above results, which also points towards their
possible generalization.

4 The physics behind

In [23, 25] the action of GT on Hochschild cohomology is
considered. If one passes from Hochschild to Hopf algebra
cohomology, one expects a doubling of this GT action with
precisely the compatibility relations installed which lead to
the definition of the self-dual, noncommutative, and non-
cocommutative Hopf algebraHGT (see [31]).
As we have mentioned in Sect. 2, Uq (sl2) appears in

string theory as describing the world-volume geometry of
D-branes in the SU(2)-WZWmodel. We now make

Assumption 1: The generators of a suitable moduli space
of the boundary SU(2)-WZW model should be given by
the Hopf algebra cohomology of Uq (sl2).

With this assumption, we can conclude that the defor-
mation theory of the boundary SU(2)-WZWmodel should
have an action ofHGT as a symmetry.
It is one of the general beliefs in the theory of the quan-

tum coadjoint action (see e.g. [5]) that – roughly speaking
– the following holds true:

Assumption 2: The representation theory of a Hopf al-
gebra with quantum coadjoint action is determined by the
quantum coadjoint action.

In physics terminology, this means especially that in
the SU(2)-WZW model the operator product expansion
should be determined by knowing G.
If we now make Assumption 3, below, we can conclude

that the quantum coadjoint action should give a realiza-
tion of HGT. In the semi-rigid case of Uq (sl2) – where we
do not really have the doubling of GT toHGT – this means
that the quantum coadjoint action should give a realiza-
tion of the quotient of the motivic Galois group, which is
supposed to be equivalent to GT. This is precisely what we
have shown in Sect. 3.

Assumption 3: The SU(2)-WZW model should be for-
mal in the sense that its deformation theory should agree
with its algebra of observables.

This formality assumption (the cohomology of the al-
gebraic structure should agree with the algebraic structure
itself) is the essential input to pass fromHGT to the quan-
tum coadjoint action. We believe that this is a key element
to generalize our approach: quantum field theories which
have such a formality property should give a realization of
HGT in terms of a generalization of the quantum coadjoint
action on Uq (sl2).
There are indications that in many cases this formal-

ity assumption holds true in quantum field theory: for two
dimensional conformal field theories (2d CFTs) the defor-
mations described by the WDVV equations (see [11, 33])
are, indeed, in one to one correspondence to the observ-
ables of the theory. If one turns on background fields or in-
troduces NS-branes in string theory, the deformation the-
ory becomes much more complicated (see the fundamental
work [17]). We have suggested in [16] a universal envelope
for the BRST-complex, the cohomology of which might de-
scribe the full deformation theory with background fields
and NS-branes. On the level of this universal envelope we,
again, expect a formality property to hold as a consequence
of ultrarigidity (see [31] for this notion).
So, Assumption 3 might well be a general property of

quantum field theory, but in more complicated models it
might only hold true if one includes all the allowed back-
ground fields into the model. Turned the other way around,
Assumption 3 could serve as a guideline to search for ne-
cessary background fields to include in order to satisfy
this principle. If such a view holds true, our construction
might be an example of a general link between HGT as
a quantum counterpart of the motivic Galois group and
its representation-theoretic realization in quantum field
theory.
Let us conclude this section by making three remarks

on how we think one could concretely start to generalize
our approach to more complicated backgrounds in string
theory:

– One should try to exploit the link between D-brane
world-volume geometry in the SU(2)-WZW model and
NS5-brane backgrounds to obtain knowledge about
quantum motivic structures in the case of more gen-
eral NS5-brane backgrounds and for the case of lit-
tle string theory (see also the remarks in [16] on this
topic).

– In [2] a link between cohomology of tilting modules over
quantum groups at roots of unity and derived categories
of coherent sheaves has been shown. This might serve
as a starting point to study quantum motivic symme-
tries on these derived categories and could therefore be
highly relevant for the homological mirror symmetry
program [21].

– Last but not least, the quantum coadjoint action on
Uq (sl2) has been shown to relate to a hidden symme-
try of the six-vertex model (see [6, 13, 14, 24]). Can one
generalize this approach to the melting crystal models
appearing in topological string theory (see [20, 29]).
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This might be a very direct way to establish a large hid-
den symmetry of a quantum motivic type in topological
string theory.

5 Conclusion

We have shown that the Lie algebra L (G) of the quantum
coadjoint action on Uq (sl2) is induced by a representa-
tion of the solvable quotient of the motivic Galois group
given by (2) and (3). We have also given an argument
as to why we think that our construction might relate to
a general formality property of quantum field theories and
pointed out different directions in which to achieve such
a generalization.
We plan to study the physical implications of this link

between the quantum coadjoint action and the motivic Ga-
lois group in more detail in the near future.
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